Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
2.
J Virol ; 96(8): e0003722, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389264

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose an enormous threat to economic activity and public health worldwide. Previous studies have shown that the nonstructural protein 5 (nsp5, also called 3C-like protease) of alpha- and deltacoronaviruses cleaves Q231 of the NF-κB essential modulator (NEMO), a key kinase in the RIG-I-like receptor pathway, to inhibit type I interferon (IFN) production. In this study, we found that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleaved NEMO at multiple sites (E152, Q205, and Q231). Notably, SARS-CoV-2 nsp5 exhibited a stronger ability to cleave NEMO than SARS-CoV nsp5. Sequence and structural alignments suggested that an S/A polymorphism at position 46 of nsp5 in SARS-CoV versus SARS-CoV-2 may be responsible for this difference. Mutagenesis experiments showed that SARS-CoV-2 nsp5 (S46A) exhibited poorer cleavage of NEMO than SARS-CoV-2 nsp5 wild type (WT), while SARS-CoV nsp5 (A46S) showed enhanced NEMO cleavage compared with the WT protein. Purified recombinant SARS-CoV-2 nsp5 WT and SARS-CoV nsp5 (A46S) proteins exhibited higher hydrolysis efficiencies than SARS-CoV-2 nsp5 (S46A) and SARS-CoV nsp5 WT proteins in vitro. Furthermore, SARS-CoV-2 nsp5 exhibited stronger inhibition of Sendai virus (SEV)-induced interferon beta (IFN-ß) production than SARS-CoV-2 nsp5 (S46A), while introduction of the A46S substitution in SARS-CoV nsp5 enhanced suppression of SEV-induced IFN-ß production. Taken together, these data show that S46 is associated with the catalytic activity and IFN antagonism by SARS-CoV-2 nsp5. IMPORTANCE The nsp5-encoded 3C-like protease is the main coronavirus protease, playing a vital role in viral replication and immune evasion by cleaving viral polyproteins and host immune-related molecules. We showed that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleave the NEMO at multiple sites (E152, Q205, and Q231). This specificity differs from NEMO cleavage by alpha- and deltacoronaviruses, demonstrating the distinct substrate recognition of SARS-CoV-2 and SARS-CoV nsp5. Compared with SARS-CoV nsp5, SARS-CoV-2 nsp5 encodes S instead of A at position 46. This substitution is associated with stronger catalytic activity, enhanced cleavage of NEMO, and increased interferon antagonism of SARS-CoV-2 nsp5. These data provide new insights into the pathogenesis and transmission of SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus , Interferon Tipo I , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Antivirais , COVID-19/imunologia , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Humanos , Evasão da Resposta Imune/genética , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Replicação Viral/genética
4.
Front Immunol ; 12: 652252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630377

RESUMO

The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.


Assuntos
COVID-19/imunologia , Sistema Cardiovascular/virologia , Infecções por Coronavirus/imunologia , Coronavirus/fisiologia , Imunoterapia/métodos , Pulmão/virologia , Receptores de Reconhecimento de Padrão/metabolismo , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/imunologia , Animais , Sistema Cardiovascular/patologia , Humanos , Imunidade Inata , Pulmão/patologia
5.
Signal Transduct Target Ther ; 6(1): 367, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34667157

RESUMO

Cytokine release syndrome (CRS) embodies a mixture of clinical manifestations, including elevated circulating cytokine levels, acute systemic inflammatory symptoms and secondary organ dysfunction, which was first described in the context of acute graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation and was later observed in pandemics of influenza, SARS-CoV and COVID-19, immunotherapy of tumor, after chimeric antigen receptor T (CAR-T) therapy, and in monogenic disorders and autoimmune diseases. Particularly, severe CRS is a very significant and life-threatening complication, which is clinically characterized by persistent high fever, hyperinflammation, and severe organ dysfunction. However, CRS is a double-edged sword, which may be both helpful in controlling tumors/viruses/infections and harmful to the host. Although a high incidence and high levels of cytokines are features of CRS, the detailed kinetics and specific mechanisms of CRS in human diseases and intervention therapy remain unclear. In the present review, we have summarized the most recent advances related to the clinical features and management of CRS as well as cutting-edge technologies to elucidate the mechanisms of CRS. Considering that CRS is the major adverse event in human diseases and intervention therapy, our review delineates the characteristics, kinetics, signaling pathways, and potential mechanisms of CRS, which shows its clinical relevance for achieving both favorable efficacy and low toxicity.


Assuntos
Síndrome da Liberação de Citocina , Transdução de Sinais/imunologia , Doença Aguda , Doenças Autoimunes/complicações , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , COVID-19/complicações , COVID-19/imunologia , COVID-19/terapia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/terapia , Doença Enxerto-Hospedeiro/complicações , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoterapia Adotiva/efeitos adversos , Influenza Humana/complicações , Influenza Humana/imunologia , Neoplasias/complicações , Neoplasias/imunologia , Neoplasias/terapia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/complicações , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/terapia
6.
Viruses ; 13(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452323

RESUMO

Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs-SARS-CoV, MERS-CoV, and SARS-CoV-2-briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.


Assuntos
COVID-19/imunologia , Infecções por Coronavirus/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Animais , COVID-19/epidemiologia , COVID-19/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Citocinas/imunologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/virologia
7.
Front Immunol ; 12: 693579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335604

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a newly emerging, highly transmitted and pathogenic coronavirus that has caused global public health events and economic crises. As of March 4, 2021, more than 100 million people have been infected, more than 2 million deaths have been reported worldwide, and the numbers are continuing to rise. To date, a specific drug for this lethal virus has not been developed to date, and very little is currently known about the immune evasion mechanisms of SARS-CoV-2. The aim of this review was to summarize and sort dozens of published studies on PubMed to explore the pathogenic features of SARS-CoV-2, as well as the possible immune escape mechanisms of this virus.


Assuntos
COVID-19/imunologia , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/imunologia , Animais , COVID-19/epidemiologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Pandemias
8.
Immunol Res ; 69(5): 457-460, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357535

RESUMO

In this manuscript, COVID-19, Ebola virus disease, Nipah virus infection, SARS, and MERS are suggested to be considered for a novel immunological reclassification as acute onset immune dysrhythmia syndrome (n-AIDS) due to altered monocytic, Th1/Th2, as well as cytokines and chemokines balances. n-AIDs is postulated to be the cause of the acute respiratory distress and multi-inflammatory syndromes which are described with fatal COVID-19, and immunomodulators are suggested to effectively manage the mentioned diseases as well as for other disorders caused by Th1/Th2 imbalance. Meanwhile, para COVID syndrome is suggested to describe various immune-related complications, whether before or after recovery, and to embrace a potential of a latent infection, that might be discovered later, as occurred with Ebola virus disease. Finally, our hypothesis has evolved out of our real-life practice that uses immunomodulatory drugs to manage COVID-19 safely and effectively.


Assuntos
COVID-19/imunologia , Citocinas/imunologia , Doença pelo Vírus Ebola/imunologia , Infecções por Henipavirus/imunologia , Síndrome de Imunodeficiência Adquirida/imunologia , Quimiocinas/imunologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Infecções por Henipavirus/tratamento farmacológico , Humanos , Fatores Imunológicos/uso terapêutico , Linfócitos/imunologia , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/imunologia , Tratamento Farmacológico da COVID-19
9.
Front Immunol ; 12: 694355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367154

RESUMO

BACKGROUND: Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a serious public health threat because of their pandemic-causing potential. This work is the first to analyze mRNA expression data from SARS infections through meta-analysis of gene signatures, possibly identifying therapeutic targets associated with major SARS infections. METHODS: This work defines 37 gene signatures representing SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures and/or mouse lung cultures or samples and compares them through Gene Set Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS (icSARS) gene panels are defined from GSEA-identified leading-edge genes between two icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess enrichment and identify leading-edge icSARS panel genes between icSARS gene panels and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS infection are predicted by examining the intersecting membership of GSEA-identified leading-edges across gene signatures. RESULTS: Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV derived signatures, and those leading-edge genes defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution p<0.001) is observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes are shared across leading-edges with 10 over-expressed genes already associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random significant enrichment held for only the positive icSARS panel, from which nine genes are shared with icSARS infection in human cultures. Considering other SARS strains, significant, non-random enrichment (p<0.05) is observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human signatures regardless of SARS strains. CONCLUSION: The GSEA-based meta-analysis approach used here identifies genes with and without reported associations with SARS-CoV infections, highlighting this approach's predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.


Assuntos
COVID-19/imunologia , Regulação da Expressão Gênica/imunologia , Pulmão/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Animais , Humanos , Pulmão/virologia , Camundongos
10.
N Engl J Med ; 385(15): 1401-1406, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34407341

RESUMO

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern pose a challenge to the effectiveness of current vaccines. A vaccine that could prevent infection caused by known and future variants of concern as well as infection with pre-emergent sarbecoviruses (i.e., those with potential to cause disease in humans in the future) would be ideal. Here we provide data showing that potent cross-clade pan-sarbecovirus neutralizing antibodies are induced in survivors of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) infection who have been immunized with the BNT162b2 messenger RNA (mRNA) vaccine. The antibodies are high-level and broad-spectrum, capable of neutralizing not only known variants of concern but also sarbecoviruses that have been identified in bats and pangolins and that have the potential to cause human infection. These findings show the feasibility of a pan-sarbecovirus vaccine strategy. (Funded by the Singapore National Research Foundation and National Medical Research Council.).


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Amplamente Neutralizantes/sangue , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Linfócitos B , Vacina BNT162 , Humanos , Imunogenicidade da Vacina , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , Sobreviventes
11.
Front Immunol ; 12: 700926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249006

RESUMO

RIG-I-like receptors (RLR), RIG-I and MDA5, are cytoplasmic viral RNA sensors that recognize viral double-stranded RNAs and trigger signals to induce antiviral responses, including type I interferon production. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 pandemic. However, the RLR role in innate immune response to SARS-CoV-2 has not been fully elucidated. Here, we studied the roles of RLR in cytokine expression responding to SARS-CoV-2 and found that not only MDA5 but also RIG-I are involved in innate immune responses in some types of human cells. Transfection of total RNAs extracted from SARS-CoV-2-infected cells into epithelial cells induced IFN-ß, IP-10, and Ccl5 mRNA expression. The cytokine expression was reduced by knockout of either RIG-I or MDA5, suggesting that both proteins are required for appropriate innate immune response to SARS-CoV-2. Two viral genomic RNA regions strongly induced type I IFN expression, and a 200-base fragment of viral RNA preferentially induced type I IFN in a RIG-I-dependent manner. In contrast, SARS-CoV-2 infectious particles hardly induced cytokine expression, suggesting viral escape from the host response. Viral 9b protein inhibited RIG-I and MAVS interaction, and viral 7a protein destabilized the TBK1 protein, leading to attenuated IRF-3 phosphorylation required for type I IFN expression. Our data elucidated the mechanism underlying RLR-mediated response to SARS-CoV-2 infection and viral escape from the host innate immune response.


Assuntos
COVID-19/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Receptores do Ácido Retinoico/metabolismo , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/imunologia , Técnicas de Silenciamento de Genes , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Fosforilação , RNA Viral/imunologia , Receptores do Ácido Retinoico/genética , Transdução de Sinais , Proteínas da Matriz Viral/metabolismo
12.
Arch Pathol Lab Med ; 145(10): 1194-1211, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232978

RESUMO

CONTEXT.­: The purpose of this review was to compare 3 coronavirus diseases, including severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19 caused by SARS-CoV, MERS-CoV, and SARS-CoV-2 viruses, respectively. OBJECTIVE.­: To cover the following topics: clinical considerations, viral characteristics, pathology, immune response, pathogenesis, and the prognosis associated with each coronavirus disease in humans. DATA SOURCES.­: Clinically, flu-like symptoms are usual at the time of presentation for all 3 diseases, but these vary from asymptomatic to severe multisystem involvement. The pathology associated with symptomatic severe acute respiratory syndrome and COVID-19 has been well described, the most prominent of which is diffuse alveolar damage. The immune response to each of these viruses is highly complex and includes both humoral and cellular components that can have a significant impact on prognosis. In severe cases of COVID-19, a dysregulated innate host immune system can initiate a hyperinflammatory syndrome dominated by endothelial dysfunction that can lead to a hypercoagulable state with microthrombi, resulting in a systemic microvascular and macrovascular disease. CONCLUSIONS.­: The severe acute respiratory syndrome and Middle East respiratory syndrome epidemics have been limited, involving approximately 8000 and 2500 individuals, respectively. In contrast, COVID-19 has resulted in a worldwide pandemic with more than 177 million cases and 3.9 million deaths as of June 15, 2021, and fatality rates ranging from less than 0.1% to approximately 10% depending upon the country. Ending on a positive note, the development of a number of vaccines, at least 6 of which now are in clinical use, should mitigate and eventually control the devastating COVID-19 pandemic.


Assuntos
COVID-19/imunologia , Infecções por Coronavirus/imunologia , Sistema Imunitário/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Betacoronavirus/imunologia , Betacoronavirus/fisiologia , COVID-19/epidemiologia , COVID-19/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Humanos , Pandemias/prevenção & controle , Prognóstico , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/virologia
13.
Front Immunol ; 12: 626609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084161

RESUMO

Accurate detection of anti-SARS-CoV-2 antibodies provides a more accurate estimation of incident cases, epidemic dynamics, and risk of community transmission. We conducted a cross-sectional seroprevalence study specifically targeting different populations to examine the performance of pandemic control in Taiwan: symptomatic patients with epidemiological risk and negative qRT-PCR test (Group P), frontline healthcare workers (Group H), healthy adult citizens (Group C), and participants with prior virologically-confirmed severe acute respiratory syndrome (SARS) infection in 2003 (Group S). The presence of anti-SARS-CoV-2 total and IgG antibodies in all participants were determined by Roche Elecsys® Anti-SARS-CoV-2 test and Abbott SARS-CoV-2 IgG assay, respectively. Sera that showed positive results by the two chemiluminescent immunoassays were further tested by three anti-SARS-CoV-2 lateral flow immunoassays and line immunoassay (MIKROGEN recomLine SARS-CoV-2 IgG). Between June 29 and July 25, 2020, sera of 2,115 participates, including 499 Group P participants, 464 Group H participants, 1,142 Group C participants, and 10 Group S participants, were tested. After excluding six false-positive samples, SARS-CoV-2 seroprevalence were 0.4, 0, and 0% in Groups P, H, and C, respectively. Cross-reactivity with SARS-CoV-2 antibodies was observed in 80.0% of recovered SARS participants. Our study showed that rigorous exclusion of false-positive testing results is imperative for an accurate estimate of seroprevalence in countries with previous SARS outbreak and low COVID-19 prevalence. The overall SARS-CoV-2 seroprevalence was extremely low among populations of different exposure risk of contracting SARS-CoV-2 in Taiwan, supporting the importance of integrated countermeasures in containing the spread of SARS-CoV-2 before effective COVID-19 vaccines available.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/epidemiologia , Adulto , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Reações Cruzadas , Estudos Transversais , Surtos de Doenças , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Síndrome Respiratória Aguda Grave/imunologia , Taiwan/epidemiologia
14.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34060490

RESUMO

Worse outcomes occur in aged compared with young populations after infections with respiratory viruses, including pathogenic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2), and are associated with a suboptimal lung milieu ("inflammaging"). We previously showed that a single inducible phospholipase, PLA2G2D, is associated with a proresolving/antiinflammatory response in the lungs, and increases with age. Survival was increased in naive Pla2g2d-/- mice infected with SARS-CoV resulting from augmented respiratory dendritic cell (rDC) activation and enhanced priming of virus-specific T cells. Here, in contrast, we show that intranasal immunization provided no additional protection in middle-aged Pla2g2d-/- mice infected with any of the 3 pathogenic human coronaviruses because virtually no virus-specific antibodies or follicular helper CD4+ T (Tfh) cells were produced. Using MERS-CoV-infected mice, we found that these effects did not result from T or B cell intrinsic factors. Rather, they resulted from enhanced, and ultimately, pathogenic rDC activation, as manifested most prominently by enhanced IL-1ß expression. Wild-type rDC transfer to Pla2g2d-/- mice in conjunction with partial IL-1ß blockade reversed this defect and resulted in increased virus-specific antibody and Tfh responses. Together, these results indicate that PLA2G2D has an unexpected role in the lungs, serving as an important modulator of rDC activation, with protective and pathogenic effects in respiratory coronavirus infections and immunization, respectively.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos , COVID-19/imunologia , Fosfolipases A2 do Grupo II/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Animais , COVID-19/enzimologia , COVID-19/genética , Chlorocebus aethiops , Fosfolipases A2 do Grupo II/deficiência , Camundongos , Camundongos Knockout , Síndrome Respiratória Aguda Grave/enzimologia , Síndrome Respiratória Aguda Grave/genética , Células Vero
15.
Mol Cells ; 44(6): 384-391, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34098591

RESUMO

The recent appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people around the world and caused a global pandemic of coronavirus disease 2019 (COVID-19). It has been suggested that uncontrolled, exaggerated inflammation contributes to the adverse outcomes of COVID-19. In this review, we summarize our current understanding of the innate immune response elicited by SARS-CoV-2 infection and the hyperinflammation that contributes to disease severity and death. We also discuss the immunological determinants behind COVID-19 severity and propose a rationale for the underlying mechanisms.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Interações Hospedeiro-Patógeno/imunologia , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/imunologia , Anti-Inflamatórios/uso terapêutico , COVID-19/mortalidade , COVID-19/virologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/mortalidade , Síndrome da Liberação de Citocina/virologia , Dexametasona/uso terapêutico , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interleucinas/genética , Interleucinas/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/mortalidade , Síndrome Respiratória Aguda Grave/virologia , Índice de Gravidade de Doença , Transdução de Sinais , Análise de Sobrevida , Tratamento Farmacológico da COVID-19
16.
J Microbiol Immunol Infect ; 54(4): 547-556, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34023234

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2, a newly discovered coronavirus that exhibits many similarities with the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (SARS-CoV and MERS-CoV, respectively). The definite pathogenesis and immunological influences of SARS-CoV-2 have not been fully elucidated. Therefore, we constructed a brief summary comparison of SARS-CoV-2, SARS-CoV, and MERS-CoV infections regarding their immunological changes. In addition, we further investigated the immunological differences between severe and nonsevere COVID-19 cases, and we searched for possible immunological predictors of the patient outcome by reviewing case series studies to date. Possible immunological predictors of a poor outcome are leukocytosis, neutrophilia, lymphopenia (both CD4 and CD8 T cells), an increased neutrophil-to-lymphocyte ratio (NLR), and increased levels of pro-inflammatory cytokines (IL-6 and TNF-α), Th1 cytokines (IL-2 and IFN-γ), regulatory T cell cytokines (IL-10) and Th17 cytokines (IL-17). A more precise immunological map needs to be established, which may assist in diagnosing this disease and facilitate immunological precision medicine treatment.


Assuntos
COVID-19/patologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/patologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , COVID-19/imunologia , Citocinas/sangue , Humanos , Leucocitose/patologia , Linfopenia/patologia , Receptores Virais/metabolismo , Síndrome Respiratória Aguda Grave/imunologia
17.
Cell Transplant ; 30: 963689721993769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33840257

RESUMO

Until July 29th, the number of confirmed coronavirus (COVID-19) cases worldwide has risen to over 16 million, within which 655 k deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) emerges as the 11th global pandemic disease, showing the highest infectivity and lowest infection fatality rate. In this review, we compare the immunopathology among SARS-CoV, Middle East respiratory syndrome coronavirus, and SARS-CoV2. SARS-CoV2 is similar to SARS-CoV; it can cause lymphocytopenia and a rising granulocyte count. Here we point out the human body and concentrated society make for an excellent incubator for virus evolution. Most research energies put into developing the SARS-CoV2 vaccine are trying to block virus infection. Sixty-five percent of severe patients die with multiple organ failure, inflammation, and cytokine storm, which indicates that the patient's immune system maintains functionality. Finding a way to trigger the specific T cell subset and plasmablast in our body is the best shot to get away with SARS-CoV2.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/patologia , Coronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/patologia
18.
Nature ; 594(7862): 246-252, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33845483

RESUMO

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Proteoma/metabolismo , Proteômica , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Animais , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Conjuntos de Dados como Assunto , Avaliação Pré-Clínica de Medicamentos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Fosforilação , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteoma/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Fator de Crescimento Transformador beta/metabolismo , Ubiquitinação , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Viroporinas/metabolismo
19.
Front Immunol ; 12: 629193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732251

RESUMO

Hyper-induction of pro-inflammatory cytokines, also known as a cytokine storm or cytokine release syndrome (CRS), is one of the key aspects of the currently ongoing SARS-CoV-2 pandemic. This process occurs when a large number of innate and adaptive immune cells activate and start producing pro-inflammatory cytokines, establishing an exacerbated feedback loop of inflammation. It is one of the factors contributing to the mortality observed with coronavirus 2019 (COVID-19) for a subgroup of patients. CRS is not unique to the SARS-CoV-2 infection; it was prevalent in most of the major human coronavirus and influenza A subtype outbreaks of the past two decades (H5N1, SARS-CoV, MERS-CoV, and H7N9). With a comprehensive literature search, we collected changing the cytokine levels from patients upon infection with the viral pathogens mentioned above. We analyzed published patient data to highlight the conserved and unique cytokine responses caused by these viruses. Our curation indicates that the cytokine response induced by SARS-CoV-2 is different compared to other CRS-causing respiratory viruses, as SARS-CoV-2 does not always induce specific cytokines like other coronaviruses or influenza do, such as IL-2, IL-10, IL-4, or IL-5. Comparing the collated cytokine responses caused by the analyzed viruses highlights a SARS-CoV-2-specific dysregulation of the type-I interferon (IFN) response and its downstream cytokine signatures. The map of responses gathered in this study could help specialists identify interventions that alleviate CRS in different diseases and evaluate whether they could be used in the COVID-19 cases.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Índice de Gravidade de Doença , COVID-19/sangue , COVID-19/patologia , COVID-19/virologia , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/virologia , Citocinas/sangue , Humanos , Inflamação/imunologia , Influenza Humana/sangue , Influenza Humana/virologia , Síndrome Respiratória Aguda Grave/sangue , Síndrome Respiratória Aguda Grave/virologia
20.
Drug Deliv Transl Res ; 11(4): 1401-1419, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33694083

RESUMO

Although vaccines are available for many infectious diseases, there are still unresolved infectious diseases that threaten global public health. In particular, the rapid spread of unpredictable, highly contagious viruses has recorded numerous infection cases and deaths, and has changed our lives socially or economically through social distancing and wearing masks. The pandemics of unpredictable, highly contagious viruses increase the ever-high social need for rapid vaccine development. Nanotechnologies may hold promise and expedite the development of vaccines against newly emerging infectious viruses. As potential nanoplatforms for delivering antigens to immune cells, delivery systems based on lipids, polymers, proteins, and inorganic nanomaterials have been studied. These nanoplatforms have been tested as a means to deliver vaccines not as a whole, but in the form of protein subunits or as DNA or mRNA sequences encoding the antigen proteins of viruses. This review covers the current status of nanomaterial-based delivery systems for viral antigens, with highlights on nanovaccines against recently emerging infectious viruses, such as severe acute respiratory syndrome coronavirus-2, Middle East respiratory syndrome coronavirus, and Zika virus.


Assuntos
Infecções por Coronavirus/prevenção & controle , Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia/métodos , Vacinas Virais/administração & dosagem , Infecção por Zika virus/prevenção & controle , Animais , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Humanos , Nanotecnologia/tendências , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/metabolismo , Viroses/imunologia , Viroses/metabolismo , Viroses/prevenção & controle , Infecção por Zika virus/imunologia , Infecção por Zika virus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...